JOM 23923

Schwingungsspektren und Normalkoordinatenanalysen der Di-t-butylsilane ${}^{t}Bu_{2}SiX_{2}$, X = H, D, F, Cl, Br, I

Karl Hassler

Institut für Anorganische Chemie der T.U., Stremayrgasse 16, A-8010 Graz (Austria)

Manfred Weidenbruch

Fachbereich Chemie der Universität, Carl von Ossietzky-Str. 9-11, W-2900 Oldenburg (Deutschland) (Eingegangen den 26. Mai 1993)

Abstract

The infrared and Raman vibrational spectra of the di-t-butylsilanes ${}^{t}Bu_{2}SiX_{2}$ (X = H, D, F, Cl, Br, I) were recorded. Using a local symmetry force field for the t-butyl groups, normal coordinate analyses have been performed. To study the behaviour of t-butyl groups when the symmetry is lower than C_{3v} , the spectra of ${}^{t}BuSiI_{2}H$ and ${}^{t}BuSiBr_{2}H$ were included in the calculations.

Zusammenfassung

Die Infrarot- und Ramanspektren der Di-t-butylsilane 'Bu₂SiX₂ (X = H, D, F, Cl, Br, I) wurden vermessen und Normalkoordinatenanalysen unter Verwendung eines lokalen Symmetriekraftfeldes für die 'Bu-Gruppen durchgeführt. Um das Schwingungsverhalten der t-Butylgruppe unter gegenüber der Punktgruppe C_{3v} erniedrigter Symmetrie zu studieren, wurden 'BuSiI₂H und 'BuSiBr₂H in die Berechnungen mit einbezogen.

Key words: Silane; Infrared spectroscopy; Raman spectroscopy

1. Einleitung

Im Verlauf unserer Arbeiten zur Synthese von tbutyl substituierten Siliciumverbindungen stellte sich heraus, daß die spektroskopischen Eigenschaften dieser Verbindungsklasse in der Literatur nur unzureichend beschrieben sind. Dies bezieht sich sowohl auf ²⁹Si-NMR-Daten als auch auf die Infrarot- und Raman-Spektren. Wir haben daher die t-Butylsilane ${}^{t}C_{4}H_{9}$ -SiX₃ (X = H, D, F, Cl, Br, I) einer eingehenden Schwingungsanalyse unterzogen [1] und auch die ²⁹Si-Kernresonanzverschiebungen und Kopplungskonstanten einer Reihe von Verbindungen des Typs ¹BuSiX₃ und ¹Bu₂SiX₂ (X = H, F, Cl, Br, I), sowie ¹BuSiX₂Y (X = Br, I, Ph, Y = Cl und H) gemessen [1]. In dieser Arbeit sollen die Schwingungsspektren der Di-tbutylsilane ${}^{t}Bu_{2}SiX_{2}$ mitgeteilt und diskutiert werden. Ziel ist es, das Verhalten der ${}^{t}Bu_{2}Si$ -Atomanordnung sowohl qualitativ als auch quantitativ zu verstehen. Denn eine Reihe interessanter, teilweise erst in jüngster Zeit synthetisierter Moleküle wie (${}^{t}Bu_{2}Si$)₃ [2] oder (${}^{t}Bu_{2}Ge$)₃ [3] benutzen t-Butylsubstituenten zur Stabilisierung des Schweratomgerüstes. Eine Übersicht über die Vielfalt der zugänglichen Strukturen findet sich in [4]. Für den synthetisch arbeitenden anorganischen Chemiker ist daher ein zumindest qualitatives Verständnis der Schwingungsspektren von t-Butylverbindungen der Elemente der zweiten und höheren Achterperioden von Interesse.

Gegenüber Molekülen des Typs ${}^{t}C_{4}H_{9}X$ oder ${}^{t}C_{4}H_{9}SiX_{3}$ (Punktgruppe C_{3v}) ist die Symmetrie in Di-t-butylverbindungen auf C_{2v} oder bei verdrillter Anordnung der t-Butylgruppen auf C_{2} erniedrigt. Dies

Correspondence to: Dr. K. Hassler.

verursacht eine Frequenzaufspaltung der in der Punktgruppe C_{3v} entarteten inneren 'Bu-Schwingungen, deren Größe in Abhängigkeit von der Art der restlichen Substituenten am Si-Atom untersucht werden soll. Um diese Frequenzaufspaltung für eine einzelne t-Butylgruppe untersuchen zu können, wurden in einem ersten Schritt die Silane 'BuSiBr₂H und 'BuSiI₂H behandelt. Der 'C₄H₉-Substituent weist hier höchstens C_s -Symmetrie auf und die Interpretation der Spektren ist auch nicht durch die Anwesenheit einer zweiten t-Butylgruppe erschwert.

2. Experimenteller Teil

2.1. Spektren

Die IR-Spektren wurden mit einem Perkin Elmer 883 Spektrometer als Film zwischen CsBr-Scheiben (flüssige Substanzen), oder als Nujolverreibungen vermessen. Für die Ramanspektren stand ein Spex Ramalog (50 mW, 6328 Å) zur Verfügung. Flüssigkeiten wurden in 1 mm Kapillarröhrchen eindestilliert, Festsubstanzen als Kristallpulver vermessen. Die Autoren danken Frau Dr. K. Schenzel, Institut für Analytische Chemie, Martin Luther Universität Halle, für die Aufnahmen von Ramanspektren mit einem Gerät der Fa. BRUKER (IFS 66, Nd: YAG-Laser, 200 mW).

Die Schwingungsspektren, sofern in der Literatur angegeben, stimmen mit unseren Messungen weitgehend überein. Die ²⁹Si-Spektren sind vorstehend [1] beschrieben, ebenso die IR-und Ramanspektren von ^tBuSiBr₂H und ^tBuSiI₂H.

2.2. Substanzen

Alle Di-t-Butylsilane wurden nach Literaturvorschriften synthetisiert. Aus t-Butyllithium und 'BuSiCl₃ [5] erhält man 'Bu₂SiCl₂ [6], das mit LiAlH₄ bzw. LiAlD₄ glatt zu 'Bu₂SiH₂ [7] und 'Bu₂SiD₂ reduziert werden kann. Die Fluorierung mit SbF₃ führt zu 'Bu₂SiF₂ [6]. 'Bu₂SiH₂ wurde mit I₂ zum 'Bu₂SiI₂ umgesetzt [7]. 'Bu₂SiBr₂ [8] schließlich erhielten wir

TABELLE 1. Infrarot- und Ramanspektren (<1300 cm⁻¹) von ^tBu₂SiH₂ und ^tBu₂SiD₂ und ihre Zuordnung

^t Bu ₂ SiH ₂		^t Bu ₂ SiD ₂		Zuordnung						
IR (l)	Ra (1)	IR (I)	Ra (l)							
·)	1544 vs	1549 sh	$\nu_{\rm as} {\rm SiH}_2 / {\rm D}_2$	B ₁					
2115 vs	2113 s, p				-					
		1529 vs	1531 vs,p	$\nu_{\rm s} {\rm SiH}_2 / {\rm D}_2$	\mathbf{A}_1					
1260 w		1260 vs		ρCH_3						
1210 w	1206 s, p	1210 vw	1207 s,p	ρCH_3	A_1, A_2, B_1, B_2					
1180 w	1180 sh	1180 vw	1185 m							
1165 w										
1080 mw										
1035 w										
1010 sh	1013 w	1010 s	1010 w	ρCH_3						
1005 s		1000 s		}	$\mathbf{A}_1, \mathbf{A}_2, \mathbf{B}_1, \mathbf{B}_2$					
940 sh	950 vw. sh	980 w	980 vvw	$\nu_{2}CC_{3}$	A_{2}, B_{1}					
927 vs	938 m	937 s	938 m	$\nu_{n}CC_{3}$	A_{1}, B_{2}					
927 vs	938 m	676 vs	681 s, p	$\delta_s SiH_2/D_2$	A_1					
850 vs, b	852 vvw	870 m	875 vvw	$\nu_{\rm s} \rm CC_3$	\mathbf{B}_2					
825 s	824 s, p	826 vs	824 s, p	$\nu_{s}CC_{3}$	A ₁					
		805 sh								
743 vvw	752 mw	500 vs	496 w	$\gamma SiH_2/D_2$	B ₂					
718 w										
695 vvw										
680 w			496 w	$\tau SiH_2/D_2$	A ₂					
618 w	616 w	676 vs		$\nu_{as}SiC_2$	B ₂					
582 s	578 s, p	579 s	573 s, p	$\nu_{\rm s} {\rm CC}_2$	\mathbf{A}_1					
550 w										
515 vw					_					
490 vvw	496 w	427 m	422 vvw	$\rho SiH_2/D_2$	B ₁					
430 w	427 w	427 m	422 vw	$\delta_{as}CC_3$						
375 w	379 mw	367 m	377 w	$\delta_{as}CC_3$	A_2, B_1, B_2					
342 vw	345 m	340 mw	342 m	$\delta_{s}CC_{3}$	$\mathbf{A}_1, \mathbf{A}_2, \mathbf{B}_1, \mathbf{B}_2$					
	24U S		242 S	$\rho \cup c_3$	$\mathbf{A}_1, \mathbf{A}_2, \mathbf{D}_1, \mathbf{D}_2$					
	199 W 130 w		195 W 131 w							
	130 W		131 W							

139

auf analogem Wege aus dem Dihydridosilan und Brom bei -30° C (90% Ausbeute, Fp. 77°C).

3. Spektren

Die Tabellen 1 und 2 fassen die Schwingungsspektren aller Verbindungen im Bereich unter 1300 cm⁻¹ (bis auf ν SiH) zusammmen, die Zuordnungen sind durch die Normalkoordinatenanalysen (siehe Abschnitt NCA) abgesichert.

Wie die Schwingungsspektren von Dibrom-t-butylund t-Butyldiiodsilan belegen, sind die durch die Symmetrieerniedrigung auf C_s oder C_1 verursachten Linienaufspaltungen nur im Bereich der CC₃-Deformationen von merklicher Größe. ρ CH₃, ν_s CC₃ und ν_{as} CC₃ werden praktisch nicht beeinflußt. Bandenverdopplungen in diesem Frequenzbereich sollten daher auf die Anwesenheit zweier t-Butylgruppen im Molekül zurückgehen. Für jede Schwingungsbewegung eines t-Butylsubstituenten existiert eine gleichphasige (i.ph.) und eine gegenphasige (o.ph.) Bewegungsform, die oft als v_s und v_{as} (z.B. $v_s SiC_2$ und $v_{as} SiC_2$) bezeichnet werden. Dabei gingen wir von C_{2v} -Symmetrie aus, obwohl z.B. für 'Bu₂SiCl₂ eine verdrillte Anordnung der t-Butylgruppen (Symmetrie C_2) nachgewiesen ist [12]. Diese Vorgangsweise wurde gewählt, weil nicht für alle Verbindungen Strukturdaten vorliegen. In den Rassen A₁ und B₁ liegen die gleichphasigen, in A₂ und B₂ die gegenphasigen Schwingungen, wenn man von der Punktgruppe C_{2v} und damit von höchstsymmetrischer Anordnung der beiden t-Butylgruppen ausgeht. Erwartungsgemäß nimmt der Frequenzunterschied zwischen

TABELLE 2. Infrarot- und Ramanspektren ($< 1300 \text{ cm}^{-1}$) der Di-t-butyldihalogensilane

^t Bu ₂ SiF ₂		^t Bu ₂ SiCl ₂		^t Bu ₂ SiBr ₂		^t Bu ₂ SiI ₂		Zuordnung
IR (l)	Ra (I)	IR (1)	Ra (l)	IR (s)	Ra (s)	IR (s)	Ra (s)	
1265 mw		1255 w		1260 w		1260 mw)	
		1246 w					l	.CU
1223 m	1223 m, p	1205 m	1206 m, p	1200 vs	1201 m	1190 sh	1193 m ($\rho C \Pi_3$
1202 m	1185 mw	1185 m	1180 sh	1185 s	1180 sh	1183 vs	1183 ms)	
						1160 sh		
				1095 sh		1108 m		
1083 m		1083 s		1086 s		1092 s		
1035 ms						1035 ms		
						1012 sh)	
1010 s	1013 m	1012 vs	1011 w	1011 vs	1014 w	1008 vs	1011w }	ρCH
1000 s		1005 sh)	
955 sh		950 sh		950 sh		950 sh)	66
940 s	941 ms	939 vs	939 m	939 vs	937 m	938 vs	940 mw	$\nu_{\rm as}CC_3$
				874 w				
832 vs	830 m	823 vs	818 vs. p	820 vs		831 m	830 w)	
813 s	814 s. p	800 w. sh	, F	815 vs	814 s	813 vs	813 s	$\nu_{s}CC_{3}$
757 w		,		747 w	742 w	767 w	01007	
730 mw						735 s		
720 w						700 s		
665 vs		643 vs		634 vs		623 vs	624 w	ν_{a} SiC ₂
610 w	612 w					606 mw	606 w	452
569 mw	572 vs. p	608 vs	608 s, p	588 vs	588 s	574 vs	576 s	$\nu_{\rm s} SiC_2$
890 vs	890 w	567 vvs	570 w	494 vvs	495 vw	460 vvs		v_{a} Si X_{2}
850 vs	850 m, p	493 s	493 vs, p		254 vs		225 vvs	vsiX
490 s	493 w, p)	3 2
444 vvs, b	432 w	420 s		461 vs	460 s	440 sh	448 s	$\delta_{aa}CC_3$
	420 w	400 w	400 mp	416 s		412 m	412 w)	u a 5
370 sh		370 wv		382 s	381 m	380 sh)	$\delta_{s}CC_{3}$
360 s	359 w					374 vs	374 m)	5 5
340 sh							١	ρCC_3
	318 vw		319 vs, p	303 w			}	-
			290 w				297 w)	δCSiX
261 s	265 s, p		256 w					
	246 s, p		188 m		1 5 6 m		141 vs	δSiX ₂
			156 w		139 m		128 s (-
	130 w		137 m		106 ms		98 s	
							83 s)	

 $\nu_{i,ph.}$ und $\nu_{o,ph.}$ mit zunehmender Entfernung der beteiligten Koordinaten ab. Am größten ist er zwischen $\nu_s SiC_2$ und $\nu_{as} SiC_2$ (fast 100 cm⁻¹ in ¹Bu₂SiF₂); zwischen $\nu_s CC_3$ i.ph. und o.ph. der Rassen A₁ and B₂ beträgt die Aufspaltung nur mehr rund 20 cm⁻¹. Dies gilt auch für $\nu_{as} CC_3$, und die damit verkoppelte ρCH_3 -Schwingung (um 1260 cm⁻¹ und 940 cm⁻¹). Der Bereich der Deformationsschwingungen ist durch Kopplung von ρ und $\delta_s CC_3$ mit Schwingungen des SiX₂-Teils geprägt, die zu erheblichen Frequenzverschiebungen führen. Die Verhältnisse hängen von der Art des Substituenten X ab und lassen sich nur individuell für jedes Derivat diskutieren.

3.1. ${}^{t}Bu_{2}SiH_{2}$ und ${}^{t}Bu_{2}SiD_{2}$

Wegen der geringen Atommasse von H bzw. D beeinflussen die Schwingungen der SiH2-Gruppe kaum jene der beiden t-Butylgruppen. Nach dem Gruppenschwingungskonzept werden die inneren Bewegungsfreiheitsgrade einer SiH₂-Atomanordnung als ν_{as} , ν_{s} , $\delta_{s} \gamma, \tau$ und ρSiH_{2} bezeichnet. Sie sind im Spektrum in der angegebenen Reihenfolge anzutreffen, die genaue Lage hängt von der Art der restlichen Substituenten am Si-Atom ab. Üblicherweise werden alle genannten Schwingungen mit zunehmender Masse und abnehmender Elektronegativität der Substituenten langwellig verschoben. In Me_2SiH_2 liegen sie bei 2145, 2139, 959, 643, 591 und 468 cm⁻¹ [9]. Die in Tabelle 1 angegebene Zuordnung für 'Bu₂SiH₂ (2115, 2115, 927, 743, 680 und 490 cm⁻¹) unterscheidet sich bei γ und τ SiH₂ deutlich. Dies ist auf die ρ CH₃-Schwingungen zurückzuführen, die bei (CH₃)₂SiH₂ gerade im Bereich dieser beiden SiH-Gruppenschwingungen zu liegen kommen und deren Lage beeinflussen.

Die Deuterierung führt zu einem Absinken der Frequenzen nach 1549, 1531, 681, 496, 496 und 422 cm⁻¹. γSiD_2 koppelt mit $\nu_{as}SiC_2$, die auf 676 cm⁻¹ angehoben wird und zufällig mit δ_sSiD_2 zusammenfällt. γSiD_2 wiederum wird abgesenkt (500 cm⁻¹, IR) und koinzidiert mit τSiD_2 .

Der Bereich der ρCH_3 und νCC -Schwingungen ist für beide Derivate nahezu identisch. Dies gilt ebenfalls für das unterhalb 450 cm⁻¹ liegende Gebiet der CC₃-Deformationen. Die in Tabelle 1 angeführten Zuordnungen ergeben sich in natürlicher Weise aus den Normalkoordinatenanalysen und aus den Polarisationsmessungen.

3.2. $^{\prime}Bu_{2}SiF_{2}$

Von besonderem Interesse ist hier die Zuordnung der SiF-Valenzschwingungen, die als starke IR-Absorptionen erkennbar sein sollten. Neben $\nu_{s}CC_{3}$ (813 cm⁻¹ und 832 cm⁻¹) und ρCH_{3} (940 cm⁻¹ sowie 955 cm⁻¹) treten im erwarteten Bereich zwei intensive Banden bei 890 cm⁻¹ und 850 cm⁻¹ auf die eindeutig als $\nu_{as}SiF_2$ und ν_sSiF_2 zuzuordnen sind. Sie sind nicht mit ν_sCC_3 bzw. ρCH_3 verkoppelt (PEV-Anteile > 95%, siehe Abschnitt NCA). Im Vergleich zu $\nu_{as}SiF_3$ und ν_sSiF_3 von 'BuSiF₃ (960 und 875 cm⁻¹) sind sie langwellig verschoben und weisen auf eine deutliche Verringerung von f(SiF) hin.

 $\nu_{as}SiC_2$ und ν_sSiC_2 liegen bei 665 und 569 cm⁻¹. Zwischen den beiden Valenzschwingungen liegt bei 610 cm⁻¹ (IR) eine schwache Kombinationsbande $\delta_sSiF_2 + \rho CC_3$ (261 + 360 = 621 cm⁻¹), die auch im Raman-Spektrum auftritt. $\nu_{as}SiC_2$ ist von so geringer Raman-Intensität, daß sie der Beobachtung entging. Von den Di-t-butyldihalogensilanen weist 'Bu₂SiF₂ die höchstliegende asymmetrische SiC-Valenzschwingung auf, der stetige Abfall mit schwerer werdendem Halogen (665 \rightarrow 643 \rightarrow 634 \rightarrow 623 cm⁻¹; siehe Tabelle 2) zeigt klar die Erniedrigung von f(SiC) in dieser Reihenfolge.

Der Bereich der Gerüstdeformationsschwingungen ist im Vergleich zu den Wasserstoffderivaten ^tBu₂SiH₂ und ^tBu₂SiD₂ nicht wesentlich linienreicher, ein Hinweis auf zufällige Entartung einer Reihe von Normalschwingungen (siehe Abschnitt NCA). Ungeklärt ist die Zuordnung der intensiven IR-Absorption bei 490 cm⁻¹, denn für eine Grundschwingung liegt sie zu hoch. Möglicherweise handelt es sich um 2 $\delta_s SiF_2$ (2 × 261 = 522), die in Fermi-Resonanz mit $\nu_s SiC_2$ (569 cm⁻¹) und $\delta_{\alpha s} CC_3$ (444 cm⁻¹) steht und dadurch an Intensität gewinnt.

3.3. 'Bu₂SiCl₂

Auch bei diesem Molekül führt die Anwesenheit zweier t-Butylgruppen zu keiner wesentlichen Vergrößerung der Anzahl beobachteter Schwingungsübergänge. Lediglich ρ CH₃, ν_s CC₃ und ν_{as} CC₃ sind geringfügig aufgespalten (z.B. 1012 cm⁻¹ und 1005 cm⁻¹ oder 939 cm⁻¹ und 950 cm⁻¹). Der Bereich der Gerüstschwingungen ν_s und ν_{as} SiC₂ bzw. SiCl₂ (Tabelle 2) ist klar abgegrenzt gegenüber den inneren Schwingungen der t-Butylgruppen (oberhalb 800 cm⁻¹ und unterhalb 420 cm⁻¹) und ohne Mehrdeutigkeiten zuzuordnen. Erwähnt sie lediglich, daß ν_s SiCl₂ intensiv mit δ_s CC₃ (319 cm⁻¹) verkoppelt ist (siehe Abschnitt NCA).

3.4. ${}^{t}Bu_{2}SiBr_{2}$ und ${}^{t}Bu_{2}SiI_{2}$

Die zunehmende langwellige Verschiebung von $\nu_{\rm s} {\rm SiX}_2$ führt bei diesen Derivaten zu einer weiteren Verstärkung der kinetischen Kopplungseffekte mit $\delta_{\rm s} {\rm CC}_3$ und $\rho {\rm CC}_3$. Die symmetrischen SiBr₂ und SiI₂-Valenzschwingungen werden dadurch abgesenkt, $\delta_{\rm s} {\rm CC}_3$ und $\rho {\rm CC}_3$ gewinnen an Intensität. $\rho {\rm CC}_3$ kommt kopplungsbedingt sogar über $\delta_{\rm as} {\rm CC}_3$ zu liegen.

Aber auch die asymmetrischen SiX₂-Valenzschwingungen sind nicht ungekoppelt. Auch hier mischen sich Anteile von ρCC_3 im Ausmaß von etwa 30% (^tBu₂SiBr₂) bzw. 50% (^tBu₂SiI₂) zu. Es verwundert daher nicht, daß die SiX₂-Valenzschwingungen im Vergleich zu den Methylderivaten Me₂SiX₂ [10] kurzwellig verschoben sind, obwohl die SiX-Valenzkraftkonstanten kleiner sind.

4. Normalkoordinatenanalyse (NCA)

Wie bei den Silanen 'BuSiX₃ [1] gingen wir nach dem FG-Verfahren [11] vor, zur Aufstellung der G-Matrizen griffen wir auf Strukturdaten von 'Bu₂SiCl₂ [12] zurück und übertrugen die geometrischen Parameter des 'Bu₂Si-Teils auch auf die übrigen Di-tbutylsilane. Im einzelnen waren dies (pm):

$$d(SiH) = 151, d(SiF) = 156, d(SiCl) = 207,$$

 $d(SiBr) = 219,$
 $d(SiI) = 243, d(SiC) = 188, 8, d(CC) = 153, 4,$

d(CH) = 109, 0

Innerhalb der t-Butylgruppe wurden alle Winkel als Tetraederwinkel (109°28') angenommen. Die CSiC-Winkel wurden mit 125,3°, die XSiX-Winkel mit 102,7°eingesetzt. Diese Werte sind an ${}^{t}Bu_{2}SiCl_{2}$ bestimmt worden.

Um das Schwingungsverhalten des C_4H_9 -Substituenten bei erniedrigter Molekülsymmetrie zu untersuchen, wurden in einem ersten Schritt Normalkoordinatenanalysen an ^tBuSiBr₂H und ^tBuSiI₂H durchgeführt. Die verwendeten Bindungslängen und Winkel entsprachen jenen, die wir für ^tBuSiBr₃ und ^tBuSiI₃ verwendeten [1].

Bei höchstsymmetrischer Anordnung der t-Butylgruppe gehören 'BuSiBr₂H und 'BuSiI₂H der Punktgruppe C_s an. Die Symmetrieanalyse liefert folgende Aufteilung der Normalschwingungen auf die irreduzible Darstellungen dieser Punktgruppe:

 $\Gamma_{C_s} = 25A' + 20A''$

Vernachlässigt man ferner die Torsionsschwingungen und entfernt man die lagekonstanten CH₃-Schwingungen ν_{as} , ν_s , δ_{as} und δ_s CH₃ nach einem von Wilson [11] angegeben Verfahren (siehe auch [1]), so verbleiben 14 A' sowie 9 A"-Koordinaten, die für die Schwingungsberechnungen berücksichtigt wurden. Um Übertragbarkeit der symmetriekraftkonstanten der Silane 'BuSiX₃ auf 'BuSiX₂H zu erreichen, wurden die Symmetriekoordinaten der Punktgruppe C_{3v} gemäß den Korrelationstabellen in die irreduziblen Darstellungen A und A" übertragen.

$$A_1 + E(C_{3v}) \to A(C_s)$$
$$A_2 + E(C_{3v}) \to A''(C_s)$$

TABELLE 3. Berechnete und gemessene Grundschwingungen (cm^{-1}) von 'BuSiBr₂H und 'BuSiI₂H

	^t BuSiBr ₂	Н	^t BuSiI ₂ H	ł	
	ber.	gem.	ber.	gem.	
A'					
ρCH3	1199	1203	1196	1211	
ρCH ₃	1024	1013	1024	1013	
ρCH ₃	945	942	945	939	
$v_{as}CC_3$	1262	1255	1263	1259	
v _s CC ₃	824	816	820	813	
$\delta_{as}CC_3$	392	395	394	395	
δ _s CC ₃	344	342	383	377	
ρCC ₃	241	231	333	332	
ν SiC	618	609	609	601	
νSiH	2171	2186	2171	2166	
$\nu_{s} SiX_{2}$	413	420	215	210	
δSiSiH	771	768	758	754	
δ _s SiX ₂	124	125	120	131	
γSiX ₂	111	115	77	87	
Α″					
ρCH 3	1024	1012	1024	1013	
ρCH	1018	1003	1018	1005	
ρCH3	942	942	943	939	
$\nu_{as}CC_{3}$	1260	1255	1264	1259	
δasCC	387	395	376	377	
ρĈĊ	257	264	238	236	
δHSiX	761	768	730	730	
v"SiX2	489	472	448	422	
ρŜiX	112	115	106	99	
-					

Für die Rasse E müssen beide Sätze von äquivalenten Symmetriekoordinaten aufgestellt werden [13], von denen einer nach A', der andere nach A" übertragen wird. Bei dieser Vorgangsweise können die Kraftkonstantenblöcke, die sich auf die C₄H₉-Gruppe beziehen, unverändert von den t-Butylsilanen 'BuSiX₃ [1] übertragen werden. Wie Tabelle 3 zeigt, können auf diese Weise die Spektren von ^tBuSiBr₂H und ^tBuSiI₂H auf befriedigende Weise wiedergegeben werden. Eine konsequente Übertragung auf die Di-t-Butylsilane erscheint daher aus diesem Gesichtspunkt gerechtfertigt. Wählt man wiederum die höchstsymmetrische Anordnung der beiden t-Butylgruppen, so gehören die Di-tbutylsilane der Punktgruppe C_{2v} an. Ohne die (vernachlässigten) Torsionsschwingungen und nach Eliminierung von v_{as} , v_s , δ_{as} und $\delta_s CH_3$ verteilen sich die Grundschwingungen gemäß:

$$\Gamma C_{2v} = 12A_1(IR, Ra, p) + 7A_2(Ra) + 8B_1(IR, Ra) + 10B_2(IR, Ra)$$

auf die irreduziblen Darstellungen der Punktgruppe $C_{2\nu}$. Von den Schwingungen der C₄H₉-Substituenten entfallen auf die Rassen A_1 und B_2 die Koordinaten ν_{as} , ν_s , δ_{as} , δ_s und ρ CC₃ sowie drei ρ CH₃-Schwingungen. Die Rassen A₂ und B₁ enthalten jeweils ν_{as} , δ_{as} und ρ CC₃ sowie ebenfalls drei ρ CH₃-Koordinaten.

1																																							
		^V beob.	1260	1193	1011	940	813	374	I	448	576	83	225	86	1260	1011	1011	940	412	1	83	1260	1011	1011	950	374	225	460	83	1260	1193	1011	950	813	380	412	1	624	86
^t Bu _s Sil,	210200	₽ ber.	1269	1197	1010	951	815	378	249	450	580	75	194	87	1281	1010	1018	968	401	262	75	1272	1010	1018	959	379	219	466	85	1257	1195	1009	948	819	380	409	253	640	102
		₽ beob.	1260	1201	1014	937	814	381	I	460	588	I	254	106	1260	1014	1014	937	381	254	ŀ	1260	1014	1014	950	381	254	494	106	1260	1201	1014	950	814	381	416	254	634	139
^t Bus.SiBra		₽ ber.	1269	1198	1010	951	816	383	225	472	588	86	253	116	1281	1010	1018	968	401	262	86	1273	1010	1018	959	386	244	493	96	1258	1197	1009	948	820	381	417	254	646	125
		₽ beob.	1255	1206	1011	939	818	400	256	290	608	I	493	156	1255	1011	1011	939	400	256	I	1255	1011	1011	950	400	290	567	I	1255	1206	1011	950	818	370	420	256	643	156
^t BucSiClo		₽ ber.	1269	1199	1010	951	817	391	248	293	607	93	525	166	1282	1010	1018	968	402	263	122	1275	1010	1018	096	396	286	576	121	1258	1198	1009	948	821	381	422	255	647	157
•		¹ beob.	1265	1223	1013	941	814	432	246	359	569	I	890	265	1265	1013	1013	941	432	265	I	1265	1013	1013	955	432	318	850	130	1265	1223	1013	955	830	359	432	246	665	I
^t Ru SiF		¹ ber.	1273	1202	1010	952	817	407	235	354	574	105	868	262	1283	1010	1018	968	405	273	204	1271	1010	1018	959	405	317	856	130	1257	1200	1009	948	824	381	432	257	652	208
		¹ beob.	1260	1207	1010	938	824	342	242	422	573	ł	1531	681	1260	1010	1010	980	377	242	496	1260	1010	1010	938	377	242	1549	422	1260	1207	1010	938	824	377	377	242	676	496
t B., CiD		ν ber.	1272	1200	1010	951	818	351	247	419	577	111	1533	684	1279	1010	1018	967	389	255	492	1272	1010	1018	959	360	231	1544	442	1256	1202	1009	948	831	360	383	250	687	509
		^V beob.	1260	1206	1013	938	824	345	240	427	578	1	2113	938	1260	1013	1013	950	379	240	680	1260	1013	1013	950	379	240	2113	496	1260	1206	1013	938	852	379	379	240	616	752
tn., ciu	2 mic2 ud	V ber.	1272	1201	1010	957	818	354	248	422	581	112	2114	942	1280	1010	1018	968	394	255	683	1273	1010	1018	959	373	272	2114	484	1257	1203	1009	948	837	377	385	251	614	748
			A, oCH,	ρCH,	oCH,	vCC,	CC,	و م	و می	ိုပ်ပွ	v.SiC,	δ.SiC,	v_SIX,	δ _s SiX ₂	A, oCH,	oCH,	, HC	ς Ου γ			rSiX ₂	B. ACH.	CH,	CH3	v_CC,	و میں کی	occ,	vSiX,	ρSiX_2	B, oCH,	oCH,	CH,	vCC,	v.CC.	ړ. درې	ç CC,	ູ້ວວ	v. SiC,	$\sqrt{SiX_2}$

TABELLE 4. Berechnete und beobachtete Grundschwingungen (cm $^{-1}$) der Di-t-butylsilane $^{\rm t}$ Bu $_2$ SiX $_2$

	^t Bu ₂ SiH ₂	^t Bu ₂ SiF ₂	^t Bu ₂ SiCl ₂	^t Bu ₂ SiBr ₂	^t Bu ₂ SiI ₂
$A_1 F(\nu_s SiX_2)$	258	540	270	210	160
$F(\nu_s SiC_2)$	300	305	295	290	285
$F(\delta SiC_2)$	25	25	20	20	20
$F(\delta SiX_2)$	23	30	20	18	12
$F(\nu_s SiX_2/\nu SiC)$	0	20	15	10	10
$F(\nu_s SiX_2 / \delta SiX_2)$	0	25	10	10	7
$F(\nu SiC/\delta SiC_2)$	20	20	20	20	20
$B_1 F(v_{as}SiX_2)$	254	460	230	180	140
F(SCSiX)	28	25	20	15	12
$F(\nu_{as}SiX_2/\delta CSiX)$	0	25	10	10	10
$B_2 F(\nu_{as}SiC_2)$	275	280	270	265	260
F(δXSiC)	16	25	18	15	10
$F(\nu_{as}SiC_2/\delta CSiX)$	0	20	15	12	10
f(SiC)	287.5	292.5	282.5	278.5	272.5
f(SiC/SiC)	12.5	12.5	12.5	12.5	12.5
f(SiX)	256	500	250	195	150
f(SiX/SiX)	2	40	20	15	10

TABELLE 5. Einige wichtige Symmetriekraftkonstanten ^a (Nm⁻¹) der Di-t-butylsilane

^a $F(\delta CSiC)$ normiert auf r(SiC), $F(\delta CSiX)$ und $F(\delta XSiX)$ auf r(SiX)

Alle diese Symmetriekoordinaten wurden wiederum von den Rassen A₁, A₂ und E der Butylsilane ^tBuSiX₃ übertragen. Der Symmetriekoordinatenblock der Rasse E mit der Linearkombination 2 $\Delta r_1 - \Delta r_2 - \Delta r_2$ für $\nu_{as}CC_3$ wird nach A₁ und B₂ übernommen (die Symmetriekoordinaten sind symmetrisch gegenüber der durch die Atome CSiC aufgespannten Molekülebene σ_{yz}), jener mit der Linearkombination $\Delta r_2 - \Delta r_3$ für $\nu_{as}CC_3$ nach A_2 und B_1 . Wechselwirkungen zwischen den beiden t-Butylgruppen wurden in allen Rassen zu Null gesetzt, so daß ganze Kraftkonstantenblöcke der Rassen A_1 und B_2 sowie A_2 und B_1 paarweise identisch sind und während der Schwingungsberechnungen nicht mehr verändert wurden. Iterativ verfeinert wurden somit nur Kraftkonstanten, die sich auf den Molekülteil C₂SiX₂ beziehen.

Die Tabelle 4 stellt die berechneten Frequenzwerte den gemessenen Daten gegenüber, Tabelle 5 faßt die wichtigsten Symmetriekraftkonstanten des C_2SiX_2 -Teils und seiner Wechselwirkungen mit den t-Butylgruppen zusammen. Die Kraftkonstanten, die sich auf die t-Butylgruppe beziehen, sind vorstehend [1] beschrieben.

Die Schwingungsberechnungen zeigen eine Reihe von Schwingungskopplungen auf, wie es für große

 TABELLE 6. Potentialenergieverteilungen der symmetrischen SiX₂

 Valenzschwingung (%) der Di-t-butyldihalogensilane

^t Bu ₂ SiF ₂	$850 = 92 \nu_s SiF_2$
^t Bu ₂ SiCl ₂	$493 = 42 \nu_s SiCl_2, 26 \delta_s CC_3$
^t Bu ₂ SiBr ₂	$254 = 39 \nu_s \text{SiBr}_2, 26 \delta_s \text{CC}_3$
'Bu ₂ SiI ₂	$225 = 55 \nu_{s} SiI_{2}, 13 \delta_{s} CC_{3}, 16 \rho CC_{3}$

Moleküle auch zu erwarten ist. Tabelle 6 zeigt beispielhaft die Kopplungsverhältnisse für $\nu_s SiX_2$. Ist $\nu_s SiF_2$ noch weitgehend ungekoppelt, so führt das zunehmende "Eintauchen" der symmetrischen Valenzschwingung in den Bereich der CC₃-Deformationen mit schwerer werdendem Halogen zu einer intensiven Vermischung der beteiligten Schwingungsformen, die von Intensitätsaustausch begleitet ist.

5. Diskussion

Wie Tabelle 5 zeigt, unterscheiden sich die SiC-Valenzkraftkonstanten der Di-t-butylsilane nur unwesentlich von jenen der monosubstituierten Derivate ^tBuSiX₃ [1]. Dieses Ergebnis überrascht, weil innerhalb der beiden Verbindungsreihen die SiC-Valenzkraftkonstanten mit abnehmender Elektronegativität von X abnehmen. Der Ersatz eines Halogenatoms durch die t-Butylgruppe sollte f(SiC) gleichfalls absenken. Offenbar bewirkt die Winkelaufweitung am Si-Atom durch die sperrigen t-Butylreste (in 'Bu₂SiCl₂ beträgt der CSiC-Winkel 125,3° [12]) eine Zunahme des s-Charakters in der SiC-Bindung und eine Vergrößerung von f(SiC). Beide Effekte kompensieren sich gegenseitig. Die berechneten SiX-Valenzkraftkonstanten sind dagegen deutlich niedriger als jene der Silane 'BuSiX₃, worin der elektropositive Charakter der t-Butylgruppe zum Ausdruck kommt.

Zusammenfassend sei gesagt, daß die in dieser und der vorstehenden [1] Arbeit angegebene Parametrisierung der t-Butylgruppe die verläßliche Berechnung der Schwingungsspektren t-butylsubstituierter Siliciumverbindungen gestattet. Die angegebenen Kraftkonstanten und Zuordnungen sind mit Literaturdaten z.B. jenen der t-Butylhalogenide [14]) konsistent.

Dank

Einer der Autoren (K. Hassler), dankt dem Fonds zur Förderung der wissenschaftlichen Forschung, Wien, für die Unterstützung mit Sachmittel im Rahmen des Projektes P 7585-CHE.

Literatur

- 1 K. Hassler und M. Weidenbruch, J. Organomet. Chem., 465 (1994) 127.
- 2 A. Schäfer, M. Weidenbruch, K. Peters und H.-G. von Schnering, Angew. Chem., 96 (1984) 311.
- 3 M. Weidenbruch, F.-T. Grimm, M. Herrndorf, A. Schäfer, K.

Peters und H.-G. von Schnering, J. Organomet. Chem., 341 (1988) 335.

- 4 T. Tsumuraya, S.A. Batcheller und S. Masamune, Angew. Chem., 103 (1991) 916.
- 5 M.P. Doyle und C.T. West, J. Am. Chem. Soc., 97 (1975) 3777; L.J. Tyler, L.H. Sommer und F.C. Whitmore, J. Am. Chem. Soc., 70 (1977) 9.
- 6 M. Weidenbruch, H. Pesel, W. Peter und R. Steichen, J. Organomet. Chem., 141 (1977) 9.
- 7 M. Weidenbruch, A. Schäfer und R. Rankers, J. Organomet. Chem., 195 (1980) 171.
- 8 M. Weidenbruch, A. Schäfer und A. Lesch, Brauer's Handbook of Inorganic Chemistry, eingereicht.
- 9 D.F. Ball, P.L. Goggin, D.C. McKean und L.A. Woodward, Spectrochim. Acta, 16 (1960) 1358.
- 10 K. Hassler, Spectrochim. Acta, 37A (1981) 511.
- 11 E.B. Wilson, J.C. Decius und P.C. Cross, *Molecular Vibrations*, McGraw Hill, New York, 1955.
- 12 G.A. Forsyth und D.W.H. Rankin, J. Mol. Struct., 222 (1990) 467.
- 13 S. Califano, Vibrational States, Wiley, New York, 1976.
- 14 W. Hüttner und W. Zeil, Spectrochim. Acta, 22 (1966) 1007.